8 research outputs found

    Phytophthora sojae Avirulence Effector Avr3b is a Secreted NADH and ADP-ribose Pyrophosphorylase that Modulates Plant Immunity

    Get PDF
    Plants have evolved pathogen-associated molecular pattern (PAMP)-triggered immunity (PTI) and effector-triggered immunity (ETI) to protect themselves from infection by diverse pathogens. Avirulence (Avr) effectors that trigger plant ETI as a result of recognition by plant resistance (R) gene products have been identified in many plant pathogenic oomycetes and fungi. However, the virulence functions of oomycete and fungal Avr effectors remain largely unknown. Here, we combined bioinformatics and genetics to identify Avr3b, a new Avr gene from Phytophthora sojae, an oomycete pathogen that causes soybean root rot. Avr3b encodes a secreted protein with the RXLR host-targeting motif and C-terminal W and Nudix hydrolase motifs. Some isolates of P. sojae evade perception by the soybean R gene Rps3b through sequence mutation in Avr3b and lowered transcript accumulation. Transient expression of Avr3b in Nicotiana benthamiana increased susceptibility to P. capsici and P. parasitica, with significantly reduced accumulation of reactive oxygen species (ROS) around invasion sites. Biochemical assays confirmed that Avr3b is an ADP-ribose/NADH pyrophosphorylase, as predicted from the Nudix motif. Deletion of the Nudix motif of Avr3b abolished enzyme activity. Mutation of key residues in Nudix motif significantly impaired Avr3b virulence function but not the avirulence activity. Some Nudix hydrolases act as negative regulators of plant immunity, and thus Avr3b might be delivered into host cells as a Nudix hydrolase to impair host immunity. Avr3b homologues are present in several sequenced Phytophthora genomes, suggesting that Phytophthora pathogens might share similar strategies to suppress plant immunity

    bZIP Transcription Factor UvATF21 Mediates Vegetative Growth, Conidiation, Stress Tolerance and Is Required for Full Virulence of Rice False Smut Fungus Ustilaginoidea virens

    No full text
    bZIP proteins are widely distributed in eukaryotic organisms and regulate a diverse range of physiological processes. Several bZIP proteins have previously been identified in Ustilaginoidea virens. However, the biological roles of these bZIP proteins in this pathogen are still unknown. Here, one of these bZIP protein coding genes, UvATF21, was functionally characterized. Targeted deletion of UvATF21 resulted in reduced conidiation and pathogenicity despite of the increased vegetative growth. The deletion mutants also significantly decreased the sensitivity to osmotic and oxidative stresses. Interestingly, deletion of UvATF21 exhibited different performances to cell wall integrity stress. These results indicated that UvATF21 played crucial roles in vegetative growth, conidiation, stress response, and full virulence in U. virens

    Genome-wide identification and analysis of the basic leucine zipper (bZIP) transcription factor gene family in Ustilaginoidea virens

    No full text
    The basic leucine zipper (bZIP) transcription factor (TF) family is one of the largest and most diverse TF families widely distributed across the eukaryotes. The bZIP TF family play important roles in growth, development, and response to abiotic or biotic stresses, which have been well characterized in plants, but not in plant pathogenic fungi. In this study, we performed genome-wide and systematic bioinformatics analysis of bZIP genes in the fungus Ustilaginoidea virens, the causal agent of rice false smut disease. We identified 28 bZIP family members in the U. virens genome by searching for the bZIP domain in predicted genes. The gene structures, motifs and phylogenetic relationships were analyzed for bZIP genes in U. virens (UvbZIPs). Together with bZIPs from other two fungi, the bZIP genes can be divided into eight groups according to the phylogenetic relationship. Based on RNA-Seq data, the expression profiles of UvbZIPs at different infection stages were evaluated. Results showed that 17 of the UvbZIPs were up-regulated expression during the infection period. Furthermore, 11 infection-related UvbZIPs was investigated under H2O2 stress and the expression level of eight genes have changed, which confirmed their roles in stress tolerance and pathogenicity. In summary, our genome wide systematic characterization and expression analysis of UvbZIPs provided insights into the molecular functions of these genes in U. virens and provides a reference for other pathogens.The accepted manuscript in pdf format is listed with the files at the bottom of this page. The presentation of the authors' names and (or) special characters in the title of the manuscript may differ slightly between what is listed on this page and what is listed in the pdf file of the accepted manuscript; that in the pdf file of the accepted manuscript is what was submitted by the author

    Allium fistulosum L. Alleviates Apple Replant Disease by Suppressing Fusarium solani

    No full text
    Fusarium solani has often been isolated from replanted apple roots, suggesting that it is associated with apple replant disease. The mechanism underlying the ability of the mixed cropping of apple trees with Allium fistulosum L. to alleviate apple replant disease remains unclear. The aim of this study was to determine the pathogenicity of the Fusarium solani isolate HBH 08 isolated from diseased roots and the effect of A. fistulosum L. and its root secretions on Fusarium solani isolate HBH 08 and apple seedings. The field experiment showed that A. fistulosum L. not only significantly reduced the amount of the Fusarium solani isolate HBH 08 in replanted soil but also increased the biomass of the grafted apple seedlings. The GC–MS analysis indicated that dimethyl disulphide and diallyl disulphide were active molecules in the root exudates of A. fistulosum L. They inhibited the growth of the Fusarium solani isolate HBH 08 mycelium and decreased the number of spores germinated. In addition, these compounds reduced the amount of the Fusarium solani isolate HBH 08 under replanted conditions and promoted the growth of grafted apple seedlings. Overall, mixed cropping with A. fistulosum L. might be an effective approach for cultivating apple trees and controlling apple replant disease

    Development of rice conidiation media for Ustilaginoidea virens.

    No full text
    Rice false smut, caused by the ascomycete Ustilaginoidea virens, is a serious disease of rice worldwide. Conidia are very important infectious propagules of U. virens, but the ability of pathogenic isolates to produce conidia frequently decreases in culture, which influences pathogenicity testing. Here, we developed tissue media with rice leaves or panicles that stimulate conidiation of U. virens. Among the tested media, 0.10 g/ml panicle medium was most efficient for conidiation. Whereas, some rice leaf media more effectively increased conidiation than panicle media except 0.10 g/ml panicle medium, and certain non-filtered tissue media were better than their filtered counterparts. Although the conidia induced in rice tissue media were smaller, they were able to germinate on potato sucrose agar medium and infect rice normally. The rice tissue medium is also workable in inducing conidia for conidiation-defective isolates. This method provides a foundation for the production of conidia by U. virens that will be widely applicable in pathogenicity testing as well as in genetic analyses for false smut resistance in rice cultivars
    corecore